3.88 \(\int \frac{1+\sqrt{3}-\sqrt [3]{\frac{b}{a}} x}{\sqrt{a-b x^3}} \, dx\)

Optimal. Leaf size=533 \[ -\frac{2 \sqrt{2+\sqrt{3}} \left (\left (1+\sqrt{3}\right ) \sqrt [3]{b}-\left (1-\sqrt{3}\right ) \sqrt [3]{a} \sqrt [3]{\frac{b}{a}}\right ) \left (\sqrt [3]{a}-\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}+\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x}\right ),-7-4 \sqrt{3}\right )}{\sqrt [4]{3} b^{2/3} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x\right )^2}} \sqrt{a-b x^3}}+\frac{\sqrt [4]{3} \sqrt{2-\sqrt{3}} \sqrt [3]{a} \sqrt [3]{\frac{b}{a}} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}+\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x\right )^2}} E\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x}\right )|-7-4 \sqrt{3}\right )}{b^{2/3} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x\right )^2}} \sqrt{a-b x^3}}-\frac{2 \sqrt [3]{\frac{b}{a}} \sqrt{a-b x^3}}{b^{2/3} \left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x\right )} \]

[Out]

(-2*(b/a)^(1/3)*Sqrt[a - b*x^3])/(b^(2/3)*((1 + Sqrt[3])*a^(1/3) - b^(1/3)*x)) + (3^(1/4)*Sqrt[2 - Sqrt[3]]*a^
(1/3)*(b/a)^(1/3)*(a^(1/3) - b^(1/3)*x)*Sqrt[(a^(2/3) + a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3
) - b^(1/3)*x)^2]*EllipticE[ArcSin[((1 - Sqrt[3])*a^(1/3) - b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) - b^(1/3)*x)], -
7 - 4*Sqrt[3]])/(b^(2/3)*Sqrt[(a^(1/3)*(a^(1/3) - b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) - b^(1/3)*x)^2]*Sqrt[a -
b*x^3]) - (2*Sqrt[2 + Sqrt[3]]*((1 + Sqrt[3])*b^(1/3) - (1 - Sqrt[3])*a^(1/3)*(b/a)^(1/3))*(a^(1/3) - b^(1/3)*
x)*Sqrt[(a^(2/3) + a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) - b^(1/3)*x)^2]*EllipticF[ArcSin[((
1 - Sqrt[3])*a^(1/3) - b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) - b^(1/3)*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*b^(2/3)*Sqrt
[(a^(1/3)*(a^(1/3) - b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) - b^(1/3)*x)^2]*Sqrt[a - b*x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.172301, antiderivative size = 533, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 32, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.094, Rules used = {1878, 218, 1877} \[ -\frac{2 \sqrt{2+\sqrt{3}} \left (\left (1+\sqrt{3}\right ) \sqrt [3]{b}-\left (1-\sqrt{3}\right ) \sqrt [3]{a} \sqrt [3]{\frac{b}{a}}\right ) \left (\sqrt [3]{a}-\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}+\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} b^{2/3} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x\right )^2}} \sqrt{a-b x^3}}+\frac{\sqrt [4]{3} \sqrt{2-\sqrt{3}} \sqrt [3]{a} \sqrt [3]{\frac{b}{a}} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}+\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x\right )^2}} E\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x}\right )|-7-4 \sqrt{3}\right )}{b^{2/3} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x\right )^2}} \sqrt{a-b x^3}}-\frac{2 \sqrt [3]{\frac{b}{a}} \sqrt{a-b x^3}}{b^{2/3} \left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x\right )} \]

Antiderivative was successfully verified.

[In]

Int[(1 + Sqrt[3] - (b/a)^(1/3)*x)/Sqrt[a - b*x^3],x]

[Out]

(-2*(b/a)^(1/3)*Sqrt[a - b*x^3])/(b^(2/3)*((1 + Sqrt[3])*a^(1/3) - b^(1/3)*x)) + (3^(1/4)*Sqrt[2 - Sqrt[3]]*a^
(1/3)*(b/a)^(1/3)*(a^(1/3) - b^(1/3)*x)*Sqrt[(a^(2/3) + a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3
) - b^(1/3)*x)^2]*EllipticE[ArcSin[((1 - Sqrt[3])*a^(1/3) - b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) - b^(1/3)*x)], -
7 - 4*Sqrt[3]])/(b^(2/3)*Sqrt[(a^(1/3)*(a^(1/3) - b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) - b^(1/3)*x)^2]*Sqrt[a -
b*x^3]) - (2*Sqrt[2 + Sqrt[3]]*((1 + Sqrt[3])*b^(1/3) - (1 - Sqrt[3])*a^(1/3)*(b/a)^(1/3))*(a^(1/3) - b^(1/3)*
x)*Sqrt[(a^(2/3) + a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) - b^(1/3)*x)^2]*EllipticF[ArcSin[((
1 - Sqrt[3])*a^(1/3) - b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) - b^(1/3)*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*b^(2/3)*Sqrt
[(a^(1/3)*(a^(1/3) - b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) - b^(1/3)*x)^2]*Sqrt[a - b*x^3])

Rule 1878

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a,
 3]]}, Dist[(c*r - (1 - Sqrt[3])*d*s)/r, Int[1/Sqrt[a + b*x^3], x], x] + Dist[d/r, Int[((1 - Sqrt[3])*s + r*x)
/Sqrt[a + b*x^3], x], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && NeQ[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 1877

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[((1 - Sqrt[3])*d)/c]]
, s = Denom[Simplify[((1 - Sqrt[3])*d)/c]]}, Simp[(2*d*s^3*Sqrt[a + b*x^3])/(a*r^2*((1 + Sqrt[3])*s + r*x)), x
] - Simp[(3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*Elli
pticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(r^2*Sqrt[a + b*x^3]*Sqrt[(s*(
s + r*x))/((1 + Sqrt[3])*s + r*x)^2]), x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps

\begin{align*} \int \frac{1+\sqrt{3}-\sqrt [3]{\frac{b}{a}} x}{\sqrt{a-b x^3}} \, dx &=\frac{\sqrt [3]{\frac{b}{a}} \int \frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x}{\sqrt{a-b x^3}} \, dx}{\sqrt [3]{b}}-\left (-1-\sqrt{3}+\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a} \sqrt [3]{\frac{b}{a}}}{\sqrt [3]{b}}\right ) \int \frac{1}{\sqrt{a-b x^3}} \, dx\\ &=-\frac{2 \sqrt [3]{\frac{b}{a}} \sqrt{a-b x^3}}{b^{2/3} \left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x\right )}+\frac{\sqrt [4]{3} \sqrt{2-\sqrt{3}} \sqrt [3]{a} \sqrt [3]{\frac{b}{a}} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}+\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x\right )^2}} E\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x}\right )|-7-4 \sqrt{3}\right )}{b^{2/3} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x\right )^2}} \sqrt{a-b x^3}}-\frac{2 \sqrt{2+\sqrt{3}} \left (\left (1+\sqrt{3}\right ) \sqrt [3]{b}-\left (1-\sqrt{3}\right ) \sqrt [3]{a} \sqrt [3]{\frac{b}{a}}\right ) \left (\sqrt [3]{a}-\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}+\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} b^{2/3} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x\right )^2}} \sqrt{a-b x^3}}\\ \end{align*}

Mathematica [C]  time = 0.044056, size = 89, normalized size = 0.17 \[ -\frac{x \sqrt{1-\frac{b x^3}{a}} \left (x \sqrt [3]{\frac{b}{a}} \, _2F_1\left (\frac{1}{2},\frac{2}{3};\frac{5}{3};\frac{b x^3}{a}\right )-2 \left (1+\sqrt{3}\right ) \, _2F_1\left (\frac{1}{3},\frac{1}{2};\frac{4}{3};\frac{b x^3}{a}\right )\right )}{2 \sqrt{a-b x^3}} \]

Antiderivative was successfully verified.

[In]

Integrate[(1 + Sqrt[3] - (b/a)^(1/3)*x)/Sqrt[a - b*x^3],x]

[Out]

-(x*Sqrt[1 - (b*x^3)/a]*(-2*(1 + Sqrt[3])*Hypergeometric2F1[1/3, 1/2, 4/3, (b*x^3)/a] + (b/a)^(1/3)*x*Hypergeo
metric2F1[1/2, 2/3, 5/3, (b*x^3)/a]))/(2*Sqrt[a - b*x^3])

________________________________________________________________________________________

Maple [B]  time = 0.036, size = 950, normalized size = 1.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-(b/a)^(1/3)*x+3^(1/2))/(-b*x^3+a)^(1/2),x)

[Out]

-2/3*I*(b/a)^(1/3)*3^(1/2)/b*(b^2*a)^(1/3)*(-I*(x+1/2/b*(b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(b^2*a)^(1/3))*3^(1/2)*b
/(b^2*a)^(1/3))^(1/2)*((x-1/b*(b^2*a)^(1/3))/(-3/2/b*(b^2*a)^(1/3)-1/2*I*3^(1/2)/b*(b^2*a)^(1/3)))^(1/2)*(I*(x
+1/2/b*(b^2*a)^(1/3)-1/2*I*3^(1/2)/b*(b^2*a)^(1/3))*3^(1/2)*b/(b^2*a)^(1/3))^(1/2)/(-b*x^3+a)^(1/2)*((-3/2/b*(
b^2*a)^(1/3)-1/2*I*3^(1/2)/b*(b^2*a)^(1/3))*EllipticE(1/3*3^(1/2)*(-I*(x+1/2/b*(b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(
b^2*a)^(1/3))*3^(1/2)*b/(b^2*a)^(1/3))^(1/2),(-I*3^(1/2)/b*(b^2*a)^(1/3)/(-3/2/b*(b^2*a)^(1/3)-1/2*I*3^(1/2)/b
*(b^2*a)^(1/3)))^(1/2))+1/b*(b^2*a)^(1/3)*EllipticF(1/3*3^(1/2)*(-I*(x+1/2/b*(b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(b^
2*a)^(1/3))*3^(1/2)*b/(b^2*a)^(1/3))^(1/2),(-I*3^(1/2)/b*(b^2*a)^(1/3)/(-3/2/b*(b^2*a)^(1/3)-1/2*I*3^(1/2)/b*(
b^2*a)^(1/3)))^(1/2)))+2*I/b*(b^2*a)^(1/3)*(-I*(x+1/2/b*(b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(b^2*a)^(1/3))*3^(1/2)*b
/(b^2*a)^(1/3))^(1/2)*((x-1/b*(b^2*a)^(1/3))/(-3/2/b*(b^2*a)^(1/3)-1/2*I*3^(1/2)/b*(b^2*a)^(1/3)))^(1/2)*(I*(x
+1/2/b*(b^2*a)^(1/3)-1/2*I*3^(1/2)/b*(b^2*a)^(1/3))*3^(1/2)*b/(b^2*a)^(1/3))^(1/2)/(-b*x^3+a)^(1/2)*EllipticF(
1/3*3^(1/2)*(-I*(x+1/2/b*(b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(b^2*a)^(1/3))*3^(1/2)*b/(b^2*a)^(1/3))^(1/2),(-I*3^(1/
2)/b*(b^2*a)^(1/3)/(-3/2/b*(b^2*a)^(1/3)-1/2*I*3^(1/2)/b*(b^2*a)^(1/3)))^(1/2))+2/3*I*3^(1/2)/b*(b^2*a)^(1/3)*
(-I*(x+1/2/b*(b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(b^2*a)^(1/3))*3^(1/2)*b/(b^2*a)^(1/3))^(1/2)*((x-1/b*(b^2*a)^(1/3)
)/(-3/2/b*(b^2*a)^(1/3)-1/2*I*3^(1/2)/b*(b^2*a)^(1/3)))^(1/2)*(I*(x+1/2/b*(b^2*a)^(1/3)-1/2*I*3^(1/2)/b*(b^2*a
)^(1/3))*3^(1/2)*b/(b^2*a)^(1/3))^(1/2)/(-b*x^3+a)^(1/2)*EllipticF(1/3*3^(1/2)*(-I*(x+1/2/b*(b^2*a)^(1/3)+1/2*
I*3^(1/2)/b*(b^2*a)^(1/3))*3^(1/2)*b/(b^2*a)^(1/3))^(1/2),(-I*3^(1/2)/b*(b^2*a)^(1/3)/(-3/2/b*(b^2*a)^(1/3)-1/
2*I*3^(1/2)/b*(b^2*a)^(1/3)))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{x \left (\frac{b}{a}\right )^{\frac{1}{3}} - \sqrt{3} - 1}{\sqrt{-b x^{3} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-(b/a)^(1/3)*x+3^(1/2))/(-b*x^3+a)^(1/2),x, algorithm="maxima")

[Out]

-integrate((x*(b/a)^(1/3) - sqrt(3) - 1)/sqrt(-b*x^3 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-b x^{3} + a} x \left (\frac{b}{a}\right )^{\frac{1}{3}} - \sqrt{-b x^{3} + a}{\left (\sqrt{3} + 1\right )}}{b x^{3} - a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-(b/a)^(1/3)*x+3^(1/2))/(-b*x^3+a)^(1/2),x, algorithm="fricas")

[Out]

integral((sqrt(-b*x^3 + a)*x*(b/a)^(1/3) - sqrt(-b*x^3 + a)*(sqrt(3) + 1))/(b*x^3 - a), x)

________________________________________________________________________________________

Sympy [A]  time = 2.7697, size = 129, normalized size = 0.24 \begin{align*} - \frac{x^{2} \sqrt [3]{\frac{b}{a}} \Gamma \left (\frac{2}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{2}{3} \\ \frac{5}{3} \end{matrix}\middle |{\frac{b x^{3} e^{2 i \pi }}{a}} \right )}}{3 \sqrt{a} \Gamma \left (\frac{5}{3}\right )} + \frac{x \Gamma \left (\frac{1}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{3}, \frac{1}{2} \\ \frac{4}{3} \end{matrix}\middle |{\frac{b x^{3} e^{2 i \pi }}{a}} \right )}}{3 \sqrt{a} \Gamma \left (\frac{4}{3}\right )} + \frac{\sqrt{3} x \Gamma \left (\frac{1}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{3}, \frac{1}{2} \\ \frac{4}{3} \end{matrix}\middle |{\frac{b x^{3} e^{2 i \pi }}{a}} \right )}}{3 \sqrt{a} \Gamma \left (\frac{4}{3}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-(b/a)**(1/3)*x+3**(1/2))/(-b*x**3+a)**(1/2),x)

[Out]

-x**2*(b/a)**(1/3)*gamma(2/3)*hyper((1/2, 2/3), (5/3,), b*x**3*exp_polar(2*I*pi)/a)/(3*sqrt(a)*gamma(5/3)) + x
*gamma(1/3)*hyper((1/3, 1/2), (4/3,), b*x**3*exp_polar(2*I*pi)/a)/(3*sqrt(a)*gamma(4/3)) + sqrt(3)*x*gamma(1/3
)*hyper((1/3, 1/2), (4/3,), b*x**3*exp_polar(2*I*pi)/a)/(3*sqrt(a)*gamma(4/3))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{x \left (\frac{b}{a}\right )^{\frac{1}{3}} - \sqrt{3} - 1}{\sqrt{-b x^{3} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-(b/a)^(1/3)*x+3^(1/2))/(-b*x^3+a)^(1/2),x, algorithm="giac")

[Out]

integrate(-(x*(b/a)^(1/3) - sqrt(3) - 1)/sqrt(-b*x^3 + a), x)